Rabu, 27 Juni 2018

Sponsored Links

KutaSoftware: Geometry- Proving Lines Parallel Part 2 - YouTube
src: i.ytimg.com

In geometry, the line parallel is the line in the unfilled field; that is, two lines in a plane that do not touch each other or touch at any point are said to be parallel. With extensions, lines and planes, or two planes, in a three-dimensional Euclidean space that does not share a point is said to be parallel. However, two lines in a non-compliant three-dimensional space must be in the same plane to be considered parallel; otherwise they are called slashes. The parallel plane is a plane in the same three-dimensional space that never met.

The parallel lines are the subject of Euclid's parallel postulates. Parallelism is primarily the property of affine geometry and Euclidean geometry is a particular example of this type of geometry. In some other geometries, such as hyperbolic geometry, the line can have analog properties called parallelism.


Video Parallel (geometry)



Simbol

Simbol paralelnya adalah                        ?                  {\ displaystyle \ parallel}    . Misalnya, >                         A          B         ?          C          D                  {\ displaystyle AB \ parallel CD}    menunjukkan bahwa garis AB sejajar dengan line CD .

In the Unicode character set, the "parallel" and "not parallel" marks have codes U 2225 (?) And U 2226 (?), Respectively. Additionally, U 22D5 (?) Represents the relation "equals and parallel to".

Maps Parallel (geometry)



Euclidean Paralysis

Two lines in the

field

Conditions for parallelism

With the parallel line l and m in the Euclidean space, the following properties are equivalent:

  1. Each point in the path is m located at the same distance (minimum) of the line l ( line equals ).
  2. The m line is in the same field as the l but does not intersect l (remember that the line extends unlimited in both directions).
  3. When the lines m and l both intersect with the third straight line (transversal) in the same plane, the intersection angle corresponding to transversal is congruent.

Since these are equivalent properties, one of them can be taken as a definition of parallel lines in Euclidean space, but the first and third properties involve measurements, etc., are "more complicated" than the second. Thus, the second property is usually chosen as the property defining the parallel lines in Euclidean geometry. Other properties are consequences of Euclid Parallel Postulates. Another property that also involves measurement is that parallel lines to each other have the same gradient (slope).

History

The definition of parallel lines as a pair of straight lines in an unfulfilled field appears as Definition 23 in Book I of the Euclid Element. The alternative definition is discussed by other Greeks, often as part of an attempt to prove a parallel postulate. Proclus associates the definition of parallel lines as the same line to Posidonius and quotes Geminus in the same vein. Simplicius also mentions Posidonius's definition and modification by the Aganist philosopher.

In the late nineteenth century, in England, Euclid's Elements was still a standard textbook in high school. The traditional treatment of geometry is suppressed to change by new developments in projective geometry and non-Euclidean geometry, so some new textbooks for the teaching of geometry are written at this time. The main difference between these reform texts, both between themselves and between them and Euclid, is the treatment of parallel lines. These reform texts are not without their criticism and one of them, Charles Dodgson (a.k.a. Lewis Carroll), wrote a drama, Euclid and His Modern Competition , in which these texts were reviled.

One of the early reform textbooks was James Geometry by James Maurice Wilson in 1868. Wilson bases his definition of parallel lines on primitive notions of direction. According to Wilhelm Killing the idea can be traced back to Leibniz. Wilson, without defining the direction because it is primitive, uses the term in another definition like the sixth definition, "Two straight lines that meet each other have different directions, and their direction difference is the angle between them. "Wilson (1868, p.2) In definition 15 he introduces parallel lines in this way; "Straight lines that have same direction , but are not part of the same straight line, are called parallel lines ." Wilson (1868, p.12) Augustus De Morgan reviews this text and states it as a failure, especially on the basis of this definition and the way Wilson uses it to prove things about parallel lines. Dodgson also devoted most of his drama (Act II, Scene VI §§1) to denounce Wilson's treatment of alignment. Wilson edited this concept from the third edition and higher than the text.

Another property, proposed by other reformers, used as a substitute for the definition of parallel lines, was not much better. The main difficulty, as Dodgson points out, is that to use it in this way requires additional axioms to be added to the system. The definition of the equidistant line of Posidonius, described by Francis Cuthbertson in his 1874 text Euclidean Geometry suffered the problem that the points found at a certain distance on one side of a straight line must be shown to form a straight line. This can not be proven and should be considered true. The corresponding angle formed by the transverse property, used by WD Cooley in its 1860 text, The geometry element, simplified and described requires evidence of the fact that if a transverse encounters a pair of lines in corresponding angular congruent then all transversal should do it. Again, a new axiom is needed to justify this claim.

Construction

The three properties above lead to three different parallel line construction methods.

The distance between two parallel lines

Karena garis-garis sejajar dalam bidang Euclidean berjarak sama ada jarak yang unik antara dua garis sejajar. Mengingat persamaan dua garis paralel non-vertikal, non-horizontal,

                        y          =          m          x                              b                         1                                               {\ displaystyle y = mx b_ {1} \,}   
                        y          =          m          x                              b                         2                                      ,                  {\ displaystyle y = mx b_ {2} \ ,,}   

the distance between two lines can be found by placing two points (one on each line) that lie on the common perpendicular to the parallel lines and calculating the distance between them. Since the line has a slope of m , a common perpendicular line will have a slope of -1/ m and we can take the line with the equation y = - x / m as a general perpendicular. Solve linear systems

                             Â               ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ...    ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,        Â ·                 =                 m                  x                     ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ...                    b                                      1      ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,     ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ...        Â   ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,   ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ...    ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,        Â ·                 =                -                  x                                    /     ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,                 m        Â   ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,      Â                                            {\ displaystyle {\ begin {cases} y = mx b_ {1} \\ y = -x/m \ end {cases}}}  Â

dan

                                                {                                                                 y                    =                    m                    x                                                            b                                             2                                                                                                                            y                    =                    -                    x                                        /                                       m                                                                                                {\ displaystyle {\ begin {cases} y = mx b_ {2} \\ y = -x/m \ end {cases}}}   

untuk mendapatkan koordinat poin. Solusi untuk sistem linear adalah poinnya

                                   (                                        x                                 1                                         ,                             y                                 1                                                  )                   Â          =                     (                                                                            -                                         b                                             1                                                            m                                                                           m                                             2                                                                               1                                                          ,                                                                 b                                         1                                                                                              m                                             2                                                                               1                                                                   )                                    {\ displaystyle \ left (x_ {1}, y_ {1} \ right) \ = \ kiri ({\ frac {-b_ {1} m} {m ^ { 2} 1}}, {\ frac {b_ {1}} {m ^ {2} 1}} \ kanan) \,}   

dan

                                   (                                        x                                 2                                         ,                             y                                 2                                                  )                   Â          =                     (                                                                            -                                         b                                             2                                                            m                                                                           m                                             2                                                                               1                                                          ,                                                                 b                                         2                                                                                              m                                             2                                                                               1                                                                   )                  .                  {\ displaystyle \ left (x_ {2}, y_ {2} \ right) \ = \ kiri ({\ frac {-b_ {2} m} {m ^ { 2} 1}}, {\ frac {b_ {2}} {m ^ {2} 1}} \ kanan).}   

Rumus-rumus ini masih memberikan titik koordinat yang benar bahkan jika garis-garis sejajar horisontal (yaitu, m = 0). Jarak antar titik adalah

                        d          =                                                                  (                                                                                                          b                                                     1                                                                        m                        -                                                 b                                                     2                                                                        m                                                                                           m                                                     2                                                                                               1                                                                          )                                                2                                                                                       (                                                                                                          b                                                     2                                                                        -                                                 b                                                     1                                                                                                                                           m                                                     2                                                                                               1                                                                          )                                                2                                                                  ,                  {\ displaystyle d = {\ sqrt {\ left ({\ frac {b_ {1} m-b_ {2} m} {m ^ {2} 1}} \ right) ^ {2} \ left ({\ frac {b_ {2} -b_ {1}} {m ^ {2} 1}} \ right) ^ {2}}} \ ,,}   

yang mengurangi menjadi

                        d          =                                                                  |                                                b                                     2                                                -                                 b                                     1                                                                 |                                                                          m                                     2                                                               1                                                   .                  {\ displaystyle d = {\ frac {| b_ {2} -b_ {1} |} {\ sqrt {m ^ {2} 1}}} \ ,. }   

Ketika garis diberikan oleh bentuk umum persamaan garis (garis horisontal dan vertikal disertakan):

                        a          x                   b          y                              c                         1                              =          0                           {\ displaystyle ax c_ {1} = 0 \,}   
                        a          x                   b          y                              c                         2                              =          0         ,                           {\ displaystyle ax c_ {2} = 0, \,}   

jarak mereka dapat diekspresikan sebagai

                        d          =                                                                  |                                                c                                     2                                                -                                 c                                     1                                                                 |                                                                          a                                     2                                                                                b                                     2                                                                          .                  {\ displaystyle d = {\ frac {| c_ {2} -c_ {1} |} {\ sqrt {a ^ {2} b ^ {2}}} }.}   

Dua garis dalam ruang tiga dimensi

Two lines in the same three-dimensional space that do not intersect do not need to be parallel. Only if they are on a public plane, they are called parallel; otherwise they are called slashes.

Two different lines l and m in three-dimensional space are aligned if and only if the distance from the point P on line m to the nearest point on the l does not depend on the location P in the m path. This never applies to slashes.

Lines and fields

A line m and the field q in a three-dimensional space, a line that does not lie in that plane, is aligned if and only if they are not intersecting.

Equivalent, they are aligned if and only if the distance from the point P in the path m to the nearest point in the field q P in the m path.

Two planes

Similar to the fact that the parallel lines must lie in the same plane, the parallel plane must lie in the same three-dimensional space and contain no common ground.

Two different fields q and r are aligned if and only if the distance from the point P in the q field to the nearest point in the field r does not depend on the location P in the q field. This will never happen if both planes are not in the same three-dimensional space.

Geometry Parallel and Perpendicular Lines Worksheet Answers ...
src: www.wascgroup.com


Extensions for non-Euclidean geometry

In non-Euclidean geometry, it is more common to speak of geodesy than the line (straight). Geodesy is the shortest path between two points in a given geometry. In physics this can be interpreted as the path that the particle follows if no force is applied to it. In non-Euclidean geometry (elliptic or hyperbolic geometry) the three Euclidean properties mentioned above are unequal and only the second, (The line m is in the same plane as line l but does not inters l) since no measurement is useful in non geometry -Ellidean. In general the geometry of the three properties above gives three different types of curves, the same spacing curve , parallel geodesies and geodesics that share a common perpendicular, respectively.

Hyperbolic Geometry

While in Euclidean geometry, two geodeses can be intersect or parallel, in hyperbolic geometry, there are three possibilities. Two geodesics belonging to the same field can be:

  1. cut , if they intersect at the same point on the plane,
  2. parallel , if they do not intersect in the plane, but converge to a common boundary point in infinity (ideal point), or
  3. very parallel , if they do not have a common boundary point to infinity.

In the literature ultra parallel geodesics is often called non-intersecting . Geodesy intersecting at infinity is called restrictive parallel .

As in the illustration through the point a not on the path l there are two restricted parallel lines, one for each direction of the ideal point of line l. They split lines that cut lines and very parallel lines with lines l .

The ultra-parallel line has one common perpendicular (ultraparallel theorem), and diverges on both sides of this general perpendicular.


Geometri bulat atau eliptik

In a rounded geometry, all geodesic is a large circle. The big circle splits the ball in two equal hemispheres and all the big circles intersect each other. Thus, there is no parallel geodesy to a particular geodesic, since all geodesics intersect. The same curve on the sphere is called parallel latitude analogous to the latitude in the globe. The parallel latitude can be generated by the intersection of the sphere with the plane parallel to the plane through the center of the ball.

KutaSoftware: Geometry- Parallel Lines And Transversals Part 2 ...
src: i.ytimg.com


Reflexive variant

Jika l, m, n adalah tiga garis yang berbeda, maka                         l         ?          m          Â         ?          Â          m         ?          n          Â                  ?                   Â          l         ?          n         .                  {\ displaystyle l \ parallel m \ \ land \ m \ parallel n \ \ menyiratkan \ l \ paralel n.}   

In this case, parallelism is a transitive relationship. However, in the case of l = n , the superimposed line is not is considered to be parallel in Euclidean geometry. The binary relationship between parallel lines is clearly a symmetric relationship. According to Euclid's principle, parallelism is not reflexive relation and thus fail to be an equivalence relation. However, in the affine geometry the parallel pencil lines are taken as the equivalence class in the set of lines in which parallelism is the relation of equality.

For this purpose, Emil Artin (1957) adopted the definition of parallelism in which two lines are parallel if they have all or none of their points in common. Then the line is parallel to itself so that the reflexive and transitive nature belongs to this type of parallelism, creating the equivalent relation on the set of lines. In the study of the geometry of events, variants of this parallelism are used in the affine field.

KutaSoftware: Geometry- Proving Lines Parallel Part 1 - YouTube
src: i.ytimg.com


See also

  • Clifford's parallel
  • Restrict parallel
  • Parallel curve
  • The Ultraparallel Theorem

KutaSoftware: Geometry- Proportional Parts In Triangles And ...
src: i.ytimg.com


Note


Geometry 3.2 Angles and Parallel Lines - YouTube
src: i.ytimg.com


References

  • Heath, Thomas L. (1956), The Thirteen Books of Euclid's Elements (2nd ed.) [facsimile. Original publication: Cambridge University Press, 1925] ed.), New York: Dover Publications
(3 vols): ISBNÃ, 0-486-60088-2 (vol.1), ISBNÃ, 0-486-60089-0 (volume 2), ISBNÃ, 0-486- 60090 -4 (Volume 3). Heath's authoritative translation plus extensive historical research and detailed commentary throughout the text.
Richards, Joan L. (1988), The Mathematical Vision: The Pursuit of Geometry in the Victorian England , Boston: Academic Press ISBN: 0-12-587445-6.genre = books & amp; rft.btitle = Mathematical Vision% 3A Pursuit Geometry in Victorian English & amp; rft.place = Boston & amp; rft.pub = Academic Press & amp; rft.date = 1988 & amp; rft. isbn = 0- 12-587445-6 & amp; rft.aulast = Richards & amp; rft.aufirst = Joan L. & amp; rfr_id = info% 3Asid% 2Fen.wikipedia.org% 3And% 28geometry% 29 "> < span>
  • Wilson, James Maurice (1868), Elementary Geometry (1st ed.), London: Macmillan and Co. <span> </span> </span> </li> <li> <cite id = "CITEREFWylie, _Jr.1964" class = "quote"> Wylie, Jr., CR (1964), <i> Geometry Foundation </i>, McGraw-Hill </cite> <span title = "ctx_ver = Z39.88-2004 & amp; rft_val_fmt = info% 3Aofi% 2Ffmt% 3Akev% 3Amtx% 3Abook & amp; rft.genre = books & amp; rft.btitle = Foundation of Geometry & amp; rft.pub = McGraw% E2% 80% 93 & amp; rft.date = 1964 & amp; rft.aulast = Wylie% 2C Jr. & amp; rft.aufirst = CR & amp; rfr_id = info% 3Asid% 2Fen.wikipedia.org% 3Anekara% 28geometry% 29 "> <span> Ã, </span> </span> </li> </ul> <br /><center><div style='max-width: 550px;'><img alt="Geometry 3.5 - Proving Lines Parallel - YouTube" src="http://i0.wp.com/imgstorage.ga/wp-contents/uploads/2018/06/R1jrrA.jpg" style="max-width: 100%; height: auto;" title="Geometry 3.5 - Proving Lines Parallel - YouTube"></div><div style="font-size:8pt; width: 100%; align: left; color: grey;">src: i.ytimg.com</div></center> <br /><br /> <h2> <span id = "Further_reading"> Further reading </span> </h2> <ul> <li> <cite id = "CITEREFPapadopoulosThÃÆ' Â © ret2014" class = "quote"> Papadopoulos, Athanase; Thá © © ret, Guillaume (2014), <i> La thÃÆ' Â © orie des parallÃÆ'¨les de Johann Heinrich Lambert: PrÃÆ' Â © sentation, traduction et commentaires </i>, Paris: Collection of Science dans l'histoire, Librairie Albert Blanchard, ISBN: 978-2-85367-266-5 </cite> <span title = "ctx_ver = Z39.88-2004 & amp; rft_val_fmt = info% 3Aofi% 2Ffmt% 3Akev% 3Amtx% 3Abook & amp; rft.genre = book & amp; rft.btitle = La th% C3% A9orie des parall% C3% A8les de Johann Heinrich Lambert% 3A Pr% C3% A9sentation% 2C traduction et commentaires & amp; rft.place = Paris & amp; rft.pub = Collection Science dans l% 27histoire% 2C Librairie Albert Blanchard & amp; rft.date = 2014 & amp; rft.isbn = 978-2-85367-266-5 & amp; rft.aulast = Papadopoulos & amp; rft.aufirst = Athanase & amp; rft.au = Th% C3% A9ret% 2C Guillaume & amp; rfr_id = info% 3Asid% 2Fen.wikipedia.org% 3Atural% 28geometri% 29 "> <span> </span> </span> </li> </ul> <br /><center><div style='max-width: 550px;'><img alt="Parallel Lines" src="http://i0.wp.com/imgstorage.ga/wp-contents/uploads/2018/06/fffHVH.jpg" style="max-width: 100%; height: auto;" title="Parallel Lines"></div><div style="font-size:8pt; width: 100%; align: left; color: grey;">src: cdn.pythagorasandthat.co.uk</div></center> <br /><br /> <h2> <span id = "External_links"> External links </span> </h2> <ul> <li> Create a parallel line through a given point with a compass and ruler </li> </ul></p><p class="divsource">Source of the article : <a target="_blank" href="https://en.wikipedia.org/wiki/Parallel_(geometry)">Wikipedia</a></p> </div> <script type='text/javascript'> var obj0=document.getElementById("post13412369214790865251"); var obj1=document.getElementById("post23412369214790865251"); var s=obj1.innerHTML; var t=s.substr(0,s.length/2); var r=t.lastIndexOf("<br>"); if(r>0) {obj0.innerHTML=s.substr(0,r);obj1.innerHTML=s.substr(r+4);} </script> </div> <span itemprop='publisher' itemscope='itemscope' itemtype='https://schema.org/Organization'> <span itemprop='logo' itemscope='itemscope' itemtype='https://schema.org/ImageObject'> <meta content='https://4.bp.blogspot.com/-TdAO9ITF4Eg/VbrrOOo0Y1I/AAAAAAAAFNg/EyxPHy80y7c/s1600/logo2png.png' itemprop='url'/> <meta content='125' itemprop='width'/> <meta content='125' itemprop='height'/> </span> <meta content='Indication Info' itemprop='name'/> </span> <div style='clear: both;'></div> </div> <div class='post-footer'> <div class='post-footer-line post-footer-line-1'> <div class='adspost2'> <center> <script async='async' src='//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js'></script> <ins class='adsbygoogle' data-ad-client='ca-pub-7996942734129977' data-ad-format='auto' data-ad-slot='4847041422' style='display:block'></ins> <script> (adsbygoogle = window.adsbygoogle || []).push({}); </script> </center> </div> <div class='clear'></div> <div id='share-this'> <h4><span>Share this</span></h4> <div class='clear'></div> <a class='this-fb' href='http://www.facebook.com/sharer.php?u=https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html' onclick='window.open(this.href,"popupwindow","status=0,height=500,width=500,resizable=0,top=50,left=100");return false;' rel='nofollow' target='_blank' title='Facebook'><i class='fb-1'></i>Share on Facebook</a><a class='this-tw' href='http://www.blogger.com/share-post.g?blogID=6682949774174203448&postID=3412369214790865251&target=twitter' onclick='window.open(this.href,"popupwindow","status=0,height=500,width=500,resizable=0,top=50,left=100");return false;' rel='nofollow' target='_blank' title='Twitter'><i class='tw-2'></i>Tweet on Twitter</a><a class='this-gp' href='https://plus.google.com/share?url=https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html' onclick='window.open(this.href,"popupwindow","status=0,height=500,width=500,resizable=0,top=50,left=100");return false;' rel='nofollow' target='_blank' title='Google+'><i class='gp-2'></i>Plus on Google+</a></div> <div class='related-post' id='related-post'></div> <script type='text/javascript'> var labelArray = [];var relatedPostConfig={homePage:"https://yourindicatinfo.blogspot.com/",widgetTitle:"<h4>Read More Articles:</h4>",numPosts:6,summaryLength:0,titleLength:"auto",thumbnailSize:172,noImage:"",containerId:"related-post",newTabLink:false,moreText:"Read More",widgetStyle:3,callBack:function(){}} </script> </div> <div class='post-footer-line post-footer-line-2' style='display:none;'></div> <div class='post-footer-line post-footer-line-3' style='display:none;'></div> </div> </article> <div class='comments' id='comments'> <div class='comments-tab' id='fb-comments' onclick='javascript:commentToggle("#fb-comments");' title='Comments made with Facebook'> <img class='comments-tab-icon' src='http://static.ak.fbcdn.net/rsrc.php/v1/yH/r/eIpbnVKI9lR.png'/><fb:comments-count href='https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html'></fb:comments-count> Comments</div> <div class='comments-tab inactive-select-tab' id='blogger-comments' onclick='javascript:commentToggle("#blogger-comments");' title='Comments from Blogger'> <img class='comments-tab-icon' src='http://www.blogger.com/img/icon_logo32.gif'/> 0 Comments</div> <div class='clear'></div> </div> <div class='comments-page' id='fb-comments-page'> <div id='fb-root'></div> <fb:comments href='https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html' num_posts='2' width='550'></fb:comments></div> <div class='comments comments-page' id='blogger-comments-page'> <script src='http://connect.facebook.net/en_US/all.js#xfbml=1'></script><script src='http://code.jquery.com/jquery-latest.js'></script><meta content='210800155920856' property='fb:admins'/><script type='text/javascript'>function commentToggle(selectTab) {$(".comments-tab").addClass("inactive-select-tab");$(selectTab).removeClass("inactive-select-tab");$(".comments-page").hide();$(selectTab + "-page").show();}</script> <style>.comments-page { background-color: #f2f2f2;}#blogger-comments-page { padding: 0px 5px; display: none;}.comments-tab { float: left; padding: 5px; margin-right: 3px; cursor: pointer; background-color: #f2f2f2;}.comments-tab-icon { height: 14px; width: auto; margin-right: 3px;}.comments-tab:hover { background-color: #eeeeee;}.inactive-select-tab { background-color: #d1d1d1;}</style> </div> </div> </div></div> <!--Can't find substitution for tag [adEnd]--> </div> <div class='blog-pager' id='blog-pager'> <span id='blog-pager-newer-link'> <a class='blog-pager-newer-link' href='https://yourindicatinfo.blogspot.com/2018/06/coppock-curve.html' id='Blog1_blog-pager-newer-link' title='Posting Lebih Baru'>‹ Newer Post</a> </span> <span id='blog-pager-older-link'> <a class='blog-pager-older-link' href='https://yourindicatinfo.blogspot.com/2018/06/safety-valve.html' id='Blog1_blog-pager-older-link' title='Posting Lama'>Older Post ›</a> </span> <a class='home-link' href='https://yourindicatinfo.blogspot.com/'>Beranda</a> </div> <div class='clear'></div> <div class='post-feeds'> <div class='feed-links'> Langganan: <a class='feed-link' href='https://yourindicatinfo.blogspot.com/feeds/3412369214790865251/comments/default' target='_blank' type='application/atom+xml'>Posting Komentar (Atom)</a> </div> </div> </div></div> </div> <aside id='sidebar-wrapper'> <div class='sidebar4 section' id='sidebar4'><div class='widget HTML' data-version='1' id='HTML1'> <h2 class='title'>Best Deal Today</h2> <div class='widget-content'> </div> <div class='clear'></div> </div><div class='widget PopularPosts' data-version='1' id='PopularPosts1'> <h4>Most Visited</h4> <div class='widget-content popular-posts'> <ul> <li> <div class='item-content'> <div class='item-thumbnail'> <a href='https://yourindicatinfo.blogspot.com/2018/06/glossitis.html' title='Glossitis'> <img alt='' border='0' height='72' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhYQmhwUGc0CyKu5REbzZh5fFRWeXKbjh7Mx3bUP99KTvltlZBFLiiCrZKiVZxrgfgULo2GdS1mMT1d0Sa0cigtWLzgpeBm2Bge__0uQ5hJsbrN4LzQZ9ekwwb285tbErTLr0IWhghGCBo/s72-c/picture-718303.jpg' width='72'/> </a> </div> <div class='item-title'><a href='https://yourindicatinfo.blogspot.com/2018/06/glossitis.html' target='_blank'>Glossitis</a></div> <div class='item-snippet'>src: i.pinimg.com Glossitis can mean tongue pain, or more often inflammation with depapillation of the dorsal surface of the tongue (loss ...</div> </div> <div style='clear: both;'></div> </li> <li> <div class='item-content'> <div class='item-thumbnail'> <a href='https://yourindicatinfo.blogspot.com/2018/06/rhod-immune-globulin.html' title='Rho(D) immune globulin'> <img alt='' border='0' height='72' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi4lQDdRBQvRdVAv2YOEbO3CLGarE3JVBpUcF0_ugTgzWiYbPm1xOKPtzycZojJ9-J2Bqhq-FfMBnCP6pXPPq078-Ngu1Nb43zWWhsVQ87kvqgajN8g0pQLb_pZp4jLaDNCgjsk0q5hMl4/s72-c/picture-718896.jpg' width='72'/> </a> </div> <div class='item-title'><a href='https://yourindicatinfo.blogspot.com/2018/06/rhod-immune-globulin.html' target='_blank'>Rho(D) immune globulin</a></div> <div class='item-snippet'>src: www.quizover.com Rh o (D) immune globulin ( Rhig ) is a drug used to prevent Rh isoimmunization in Rh-negative mothers and treat i...</div> </div> <div style='clear: both;'></div> </li> <li> <div class='item-content'> <div class='item-thumbnail'> <a href='https://yourindicatinfo.blogspot.com/2018/05/boolean-satisfiability-problem.html' title='Boolean satisfiability problem'> <img alt='' border='0' height='72' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjH6KI0hcuUlCXI0Eer3XVvfONnTVyhFooFkydFVORB_LWq5394nmMtRPEvto96N63Qmx0kVl5xNCMAVF0pFwp6Df6tkxvN94ssdTGISdrb5FJxilFJqVdn13yEc8SdwXBgLgZo5kE01io/s72-c/picture-741961.jpg' width='72'/> </a> </div> <div class='item-title'><a href='https://yourindicatinfo.blogspot.com/2018/05/boolean-satisfiability-problem.html' target='_blank'>Boolean satisfiability problem</a></div> <div class='item-snippet'>src: i.ytimg.com In computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbrev...</div> </div> <div style='clear: both;'></div> </li> <li> <div class='item-content'> <div class='item-thumbnail'> <a href='https://yourindicatinfo.blogspot.com/2018/06/toxidrome.html' title='Toxidrome'> <img alt='' border='0' height='72' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhaXYBBDzmo4lGfgd3exhut5VOaBrEn6KUebO8r9scGPvIwYIgXyzjKMJCT9_z58PRer0OTFOC7n5txw_EKtCPMMOTWmgUQfQQ_eWXvCgsIjIlp5Sf9rzlSrkcffrn1wc8yfqYTunYEK4s/s72-c/picture-729174.jpg' width='72'/> </a> </div> <div class='item-title'><a href='https://yourindicatinfo.blogspot.com/2018/06/toxidrome.html' target='_blank'>Toxidrome</a></div> <div class='item-snippet'>src: pbs.twimg.com A toxidrome (portmanteau toxic and syndrome ) is a syndrome caused by a dangerous level of toxins in the body. The t...</div> </div> <div style='clear: both;'></div> </li> <li> <div class='item-content'> <div class='item-thumbnail'> <a href='https://yourindicatinfo.blogspot.com/2018/07/volkswagen-01m-transmission.html' title='Volkswagen 01M transmission'> <img alt='' border='0' height='72' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjuLisP3r6xxLuYAg5Lw2RAMhdzaqaWF30QOaL9zaAQHuI_FUBnEPR9rIxR9FzAE3GUI_QuoK_8GqYztqFdfPJTbSNRnquiE43pkO79A_9R4b3n0XH7Eqb5rsJp73Pwg9KtoNN51cbQYPw/s72-c/picture-731651.jpg' width='72'/> </a> </div> <div class='item-title'><a href='https://yourindicatinfo.blogspot.com/2018/07/volkswagen-01m-transmission.html' target='_blank'>Volkswagen 01M transmission</a></div> <div class='item-snippet'>src: recycledjack.com The Volkswagen 01M transmission is a four-speed automatic electronic/hydraulic transmission used in Cabrio, Jetta, G...</div> </div> <div style='clear: both;'></div> </li> </ul> </div> </div><div class='widget HTML' data-version='1' id='HTML3'> <h2 class='title'>Sponsored Links</h2> <div class='widget-content'> </div> <div class='clear'></div> </div><div class='widget BlogArchive' data-version='1' id='BlogArchive1'> <h2>Blog Archives</h2> <div class='widget-content'> <div id='ArchiveList'> <div id='BlogArchive1_ArchiveList'> <ul class='hierarchy'> <li class='archivedate expanded'> <a class='toggle' href='javascript:void(0)'> <span class='zippy toggle-open'> ▼  </span> </a> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/'> 2018 </a> <span class='post-count' dir='ltr'>(1511)</span> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/07/'> Juli </a> <span class='post-count' dir='ltr'>(149)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate expanded'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/06/'> Juni </a> <span class='post-count' dir='ltr'>(263)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/05/'> Mei </a> <span class='post-count' dir='ltr'>(326)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/04/'> April </a> <span class='post-count' dir='ltr'>(211)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/03/'> Maret </a> <span class='post-count' dir='ltr'>(121)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/02/'> Februari </a> <span class='post-count' dir='ltr'>(204)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2018/01/'> Januari </a> <span class='post-count' dir='ltr'>(237)</span> </li> </ul> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='toggle' href='javascript:void(0)'> <span class='zippy'> ►  </span> </a> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2017/'> 2017 </a> <span class='post-count' dir='ltr'>(396)</span> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2017/12/'> Desember </a> <span class='post-count' dir='ltr'>(324)</span> </li> </ul> <ul class='hierarchy'> <li class='archivedate collapsed'> <a class='post-count-link' href='https://yourindicatinfo.blogspot.com/2017/11/'> November </a> <span class='post-count' dir='ltr'>(72)</span> </li> </ul> </li> </ul> </div> </div> <div class='clear'></div> </div> </div><div class='widget Attribution' data-version='1' id='Attribution1'> <div class='widget-content' style='text-align: center;'> Diberdayakan oleh <a href='https://www.blogger.com' target='_blank'>Blogger</a>. </div> <div class='clear'></div> </div><div class='widget Navbar' data-version='1' id='Navbar1'><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d6682949774174203448\x26blogName\x3dIndication+Info\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dLIGHT\x26layoutType\x3dLAYOUTS\x26searchRoot\x3dhttps://yourindicatinfo.blogspot.com/search\x26blogLocale\x3din\x26v\x3d2\x26homepageUrl\x3dhttps://yourindicatinfo.blogspot.com/\x26targetPostID\x3d3412369214790865251\x26blogPostOrPageUrl\x3dhttps://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html\x26vt\x3d2532900335491375648', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe", messageHandlersFilter: gapi.iframes.CROSS_ORIGIN_IFRAMES_FILTER, messageHandlers: { 'blogger-ping': function() {} } }); } }); </script><script type="text/javascript"> (function() { var script = document.createElement('script'); script.type = 'text/javascript'; script.src = '//pagead2.googlesyndication.com/pagead/js/google_top_exp.js'; var head = document.getElementsByTagName('head')[0]; if (head) { head.appendChild(script); }})(); </script> </div></div> <div class='sidebar1 section' id='sidebar1'><div class='widget HTML' data-version='1' id='HTML10'> <div class='widget-content'> </div> </div></div> <div class='sidebar2 no-items section' id='sidebar2'></div> <div class='sidebar3 no-items section' id='sidebar3'> </div> <div class='sidebar5 section' id='sidebar5'><div class='widget ContactForm' data-version='1' id='ContactForm1'> <h2 class='title'>Formulir Kontak</h2> <div class='contact-form-widget'> <div class='form'> <form name='contact-form'> <p></p> Nama <br/> <input class='contact-form-name' id='ContactForm1_contact-form-name' name='name' size='30' type='text' value=''/> <p></p> Email <span style='font-weight: bolder;'>*</span> <br/> <input class='contact-form-email' id='ContactForm1_contact-form-email' name='email' size='30' type='text' value=''/> <p></p> Pesan <span style='font-weight: bolder;'>*</span> <br/> <textarea class='contact-form-email-message' cols='25' id='ContactForm1_contact-form-email-message' name='email-message' rows='5'></textarea> <p></p> <input class='contact-form-button contact-form-button-submit' id='ContactForm1_contact-form-submit' type='button' value='Kirim'/> <p></p> <div style='text-align: center; max-width: 222px; width: 100%'> <p class='contact-form-error-message' id='ContactForm1_contact-form-error-message'></p> <p class='contact-form-success-message' id='ContactForm1_contact-form-success-message'></p> </div> </form> </div> </div> <div class='clear'></div> </div></div> </aside> <!-- spacer for skins that want sidebar and main to be the same height--> <div class='clear'> </div> </div> <!-- end content-wrapper --> <div class='clear'></div> </div> <footer id='footer-wrapper'> <div id='menu'><ul> <li><a href='#' title='About'>About</a></li> <li><a href='#' title='Contact'>Contact</a></li> <li><a href='#' title='Privacy Policy'>Privacy Policy</a></li> <li><a href='#' title='Sitemap'>Sitemaps</a></li> </ul></div> Copyleft © <span itemprop='copyrightYear'> 2017 Indication Info </span></footer> </div> <script type='text/javascript'> //<![CDATA[ // Related post var randomRelatedIndex,showRelatedPost;(function(n,m,k){var d={widgetTitle:"<h4>Artikel Terkait:</h4>",widgetStyle:1,homePage:"http://www.dte.web.id",numPosts:7,summaryLength:370,titleLength:"auto",thumbnailSize:200,noImage:"",containerId:"related-post",newTabLink:false,moreText:"Baca Selengkapnya",callBack:function(){}};for(var f in relatedPostConfig){d[f]=(relatedPostConfig[f]=="undefined")?d[f]:relatedPostConfig[f]}var j=function(a){var b=m.createElement("script");b.type="text/javascript";b.src=a;k.appendChild(b)},o=function(b,a){return Math.floor(Math.random()*(a-b+1))+b},l=function(a){var p=a.length,c,b;if(p===0){return false}while(--p){c=Math.floor(Math.random()*(p+1));b=a[p];a[p]=a[c];a[c]=b}return a},e=(typeof labelArray=="object"&&labelArray.length>0)?"/-/"+l(labelArray)[0]:"",h=function(b){var c=b.feed.openSearch$totalResults.$t-d.numPosts,a=o(1,(c>0?c:1));j(d.homePage.replace(/\/$/,"")+"/feeds/posts/summary"+e+"?alt=json-in-script&orderby=updated&start-index="+a+"&max-results="+d.numPosts+"&callback=showRelatedPost")},g=function(z){var s=document.getElementById(d.containerId),x=l(z.feed.entry),A=d.widgetStyle,c=d.widgetTitle+'<ul class="related-post-style-'+A+'">',b=d.newTabLink?' target="_blank"':"",y='<span style="display:block;clear:both;"></span>',v,t,w,r,u;if(!s){return}for(var q=0;q<d.numPosts;q++){if(q==x.length){break}t=x[q].title.$t;w=(d.titleLength!=="auto"&&d.titleLength<t.length)?t.substring(0,d.titleLength)+"…":t;r=("media$thumbnail"in x[q]&&d.thumbnailSize!==false)?x[q].media$thumbnail.url.replace(/.*?:\/\//g , "//").replace(/\/s[0-9]+(\-c)?/, "/s"+d.thumbnailSize):d.noImage;u=("summary"in x[q]&&d.summaryLength>0)?x[q].summary.$t.replace(/<br ?\/?>/g," ").replace(/<.*?>/g,"").replace(/[<>]/g,"").substring(0,d.summaryLength)+"…":"";for(var p=0,a=x[q].link.length;p<a;p++){v=(x[q].link[p].rel=="alternate")?x[q].link[p].href:"#"}if(A==2){c+='<li><img alt="" class="related-post-item-thumbnail" src="'+r+'" width="'+d.thumbnailSize+'" height="'+d.thumbnailSize+'"><a class="related-post-item-title" title="'+t+'" href="'+v+'"'+b+">"+w+'</a><span class="related-post-item-summary"><span class="related-post-item-summary-text">'+u+'</span> <a href="'+v+'" class="related-post-item-more"'+b+">"+d.moreText+"</a></span>"+y+"</li>"}else{if(A==3||A==4){c+='<li class="related-post-item" tabindex="0"><a class="related-post-item-title" href="'+v+'"'+b+'><img alt="" class="related-post-item-thumbnail" src="'+r+'" width="'+d.thumbnailSize+'" height="'+d.thumbnailSize+'"></a><div class="related-post-item-tooltip"><a class="related-post-item-title" title="'+t+'" href="'+v+'"'+b+">"+w+"</a></div>"+y+"</li>"}else{if(A==5){c+='<li class="related-post-item" tabindex="0"><a class="related-post-item-wrapper" href="'+v+'" title="'+t+'"'+b+'><img alt="" class="related-post-item-thumbnail" src="'+r+'" width="'+d.thumbnailSize+'" height="'+d.thumbnailSize+'"><span class="related-post-item-tooltip">'+w+"</span></a>"+y+"</li>"}else{if(A==6){c+='<li><a class="related-post-item-title" title="'+t+'" href="'+v+'"'+b+">"+w+'</a><div class="related-post-item-tooltip"><img alt="" class="related-post-item-thumbnail" src="'+r+'" width="'+d.thumbnailSize+'" height="'+d.thumbnailSize+'"><span class="related-post-item-summary"><span class="related-post-item-summary-text">'+u+"</span></span>"+y+"</div></li>"}else{c+='<li><a title="'+t+'" href="'+v+'"'+b+">"+w+"</a></li>"}}}}}s.innerHTML=c+="</ul>"+y;d.callBack()};randomRelatedIndex=h;showRelatedPost=g;j(d.homePage.replace(/\/$/,"")+"/feeds/posts/summary"+e+"?alt=json-in-script&orderby=updated&max-results=0&callback=randomRelatedIndex")})(window,document,document.getElementsByTagName("head")[0]); // Highlight function downloadJSAtOnload(){var e=document.createElement("script");e.src="https://cdn.rawgit.com/bungfrangki/highlight/master/highlight2.js",document.body.appendChild(e)}window.addEventListener?window.addEventListener("load",downloadJSAtOnload,!1):window.attachEvent?window.attachEvent("onload",downloadJSAtOnload):window.onload=downloadJSAtOnload; // Nextprev if (typeof(jQuery) == 'undefined') {document.write("<scr" + "ipt type=\"text/javascript\" src=\"//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js\"></scr" + "ipt>");} //]]> </script> <!-- <script type="text/javascript" src="https://www.blogger.com/static/v1/widgets/984859869-widgets.js"></script> <script type='text/javascript'> window['__wavt'] = 'AOuZoY4ZdCWErtLwsYhaN-FSmvYNsypeRw:1731779216138';_WidgetManager._Init('//www.blogger.com/rearrange?blogID\x3d6682949774174203448','//yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html','6682949774174203448'); _WidgetManager._SetDataContext([{'name': 'blog', 'data': {'blogId': '6682949774174203448', 'title': 'Indication Info', 'url': 'https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html', 'canonicalUrl': 'http://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html', 'homepageUrl': 'https://yourindicatinfo.blogspot.com/', 'searchUrl': 'https://yourindicatinfo.blogspot.com/search', 'canonicalHomepageUrl': 'http://yourindicatinfo.blogspot.com/', 'blogspotFaviconUrl': 'https://yourindicatinfo.blogspot.com/favicon.ico', 'bloggerUrl': 'https://www.blogger.com', 'hasCustomDomain': false, 'httpsEnabled': true, 'enabledCommentProfileImages': true, 'gPlusViewType': 'FILTERED_POSTMOD', 'adultContent': false, 'analyticsAccountNumber': '', 'encoding': 'UTF-8', 'locale': 'id', 'localeUnderscoreDelimited': 'id', 'languageDirection': 'ltr', 'isPrivate': false, 'isMobile': false, 'isMobileRequest': false, 'mobileClass': '', 'isPrivateBlog': false, 'isDynamicViewsAvailable': true, 'feedLinks': '\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22Indication Info - Atom\x22 href\x3d\x22https://yourindicatinfo.blogspot.com/feeds/posts/default\x22 /\x3e\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/rss+xml\x22 title\x3d\x22Indication Info - RSS\x22 href\x3d\x22https://yourindicatinfo.blogspot.com/feeds/posts/default?alt\x3drss\x22 /\x3e\n\x3clink rel\x3d\x22service.post\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22Indication Info - Atom\x22 href\x3d\x22https://www.blogger.com/feeds/6682949774174203448/posts/default\x22 /\x3e\n\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22Indication Info - Atom\x22 href\x3d\x22https://yourindicatinfo.blogspot.com/feeds/3412369214790865251/comments/default\x22 /\x3e\n', 'meTag': '', 'adsenseHostId': 'ca-host-pub-1556223355139109', 'adsenseHasAds': false, 'adsenseAutoAds': false, 'boqCommentIframeForm': true, 'loginRedirectParam': '', 'view': '', 'dynamicViewsCommentsSrc': '//www.blogblog.com/dynamicviews/4224c15c4e7c9321/js/comments.js', 'dynamicViewsScriptSrc': '//www.blogblog.com/dynamicviews/3d970d7188fc7945', 'plusOneApiSrc': 'https://apis.google.com/js/platform.js', 'disableGComments': true, 'interstitialAccepted': false, 'sharing': {'platforms': [{'name': 'Dapatkan link', 'key': 'link', 'shareMessage': 'Dapatkan link', 'target': ''}, {'name': 'Facebook', 'key': 'facebook', 'shareMessage': 'Bagikan ke Facebook', 'target': 'facebook'}, {'name': 'BlogThis!', 'key': 'blogThis', 'shareMessage': 'BlogThis!', 'target': 'blog'}, {'name': 'X', 'key': 'twitter', 'shareMessage': 'Bagikan ke X', 'target': 'twitter'}, {'name': 'Pinterest', 'key': 'pinterest', 'shareMessage': 'Bagikan ke Pinterest', 'target': 'pinterest'}, {'name': 'Email', 'key': 'email', 'shareMessage': 'Email', 'target': 'email'}], 'disableGooglePlus': true, 'googlePlusShareButtonWidth': 0, 'googlePlusBootstrap': '\x3cscript type\x3d\x22text/javascript\x22\x3ewindow.___gcfg \x3d {\x27lang\x27: \x27id\x27};\x3c/script\x3e'}, 'hasCustomJumpLinkMessage': false, 'jumpLinkMessage': 'Baca selengkapnya', 'pageType': 'item', 'postId': '3412369214790865251', 'postImageThumbnailUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiIyz2ndy0jK7OJcMzyUVnrg6LHJycV8m52b7IS2Ifzuqo1rDV4KOMzPP1h5p1eaZVmfQ_mWqg_cdTyHUrOOlh8hDLEgw0OxjxPNnK2zRmchtNA_95AtbPVYGzOcQ_du9I_Xb-wXacw7q4/s72-c/picture-712354.jpg', 'postImageUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiIyz2ndy0jK7OJcMzyUVnrg6LHJycV8m52b7IS2Ifzuqo1rDV4KOMzPP1h5p1eaZVmfQ_mWqg_cdTyHUrOOlh8hDLEgw0OxjxPNnK2zRmchtNA_95AtbPVYGzOcQ_du9I_Xb-wXacw7q4/s320/picture-712354.jpg', 'pageName': 'Parallel (geometry)', 'pageTitle': 'Indication Info: Parallel (geometry)'}}, {'name': 'features', 'data': {}}, {'name': 'messages', 'data': {'edit': 'Edit', 'linkCopiedToClipboard': 'Tautan disalin ke papan klip!', 'ok': 'Oke', 'postLink': 'Tautan Pos'}}, {'name': 'template', 'data': {'name': 'custom', 'localizedName': 'Khusus', 'isResponsive': false, 'isAlternateRendering': false, 'isCustom': true}}, {'name': 'view', 'data': {'classic': {'name': 'classic', 'url': '?view\x3dclassic'}, 'flipcard': {'name': 'flipcard', 'url': '?view\x3dflipcard'}, 'magazine': {'name': 'magazine', 'url': '?view\x3dmagazine'}, 'mosaic': {'name': 'mosaic', 'url': '?view\x3dmosaic'}, 'sidebar': {'name': 'sidebar', 'url': '?view\x3dsidebar'}, 'snapshot': {'name': 'snapshot', 'url': '?view\x3dsnapshot'}, 'timeslide': {'name': 'timeslide', 'url': '?view\x3dtimeslide'}, 'isMobile': false, 'title': 'Parallel (geometry)', 'description': 'src: i.ytimg.com In geometry, the line parallel is the line in the unfilled field; that is, two lines in a plane that do not touch each ot...', 'featuredImage': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiIyz2ndy0jK7OJcMzyUVnrg6LHJycV8m52b7IS2Ifzuqo1rDV4KOMzPP1h5p1eaZVmfQ_mWqg_cdTyHUrOOlh8hDLEgw0OxjxPNnK2zRmchtNA_95AtbPVYGzOcQ_du9I_Xb-wXacw7q4/s320/picture-712354.jpg', 'url': 'https://yourindicatinfo.blogspot.com/2018/06/parallel-geometry.html', 'type': 'item', 'isSingleItem': true, 'isMultipleItems': false, 'isError': false, 'isPage': false, 'isPost': true, 'isHomepage': false, 'isArchive': false, 'isLabelSearch': false, 'postId': 3412369214790865251}}]); _WidgetManager._RegisterWidget('_HeaderView', new _WidgetInfo('Header1', 'header', document.getElementById('Header1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'main', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/2784278825-lbx.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/1964470060-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML1', 'sidebar4', document.getElementById('HTML1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_PopularPostsView', new _WidgetInfo('PopularPosts1', 'sidebar4', document.getElementById('PopularPosts1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML3', 'sidebar4', document.getElementById('HTML3'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogArchiveView', new _WidgetInfo('BlogArchive1', 'sidebar4', document.getElementById('BlogArchive1'), {'languageDirection': 'ltr', 'loadingMessage': 'Memuat\x26hellip;'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_AttributionView', new _WidgetInfo('Attribution1', 'sidebar4', document.getElementById('Attribution1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_NavbarView', new _WidgetInfo('Navbar1', 'sidebar4', document.getElementById('Navbar1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML10', 'sidebar1', document.getElementById('HTML10'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_ContactFormView', new _WidgetInfo('ContactForm1', 'sidebar5', document.getElementById('ContactForm1'), {'contactFormMessageSendingMsg': 'Mengirim...', 'contactFormMessageSentMsg': 'Pesan sudah dikirim.', 'contactFormMessageNotSentMsg': 'Pesan tidak dapat dikirim. Coba lagi nanti.', 'contactFormInvalidEmailMsg': 'Alamat email harus valid.', 'contactFormEmptyMessageMsg': 'Bidang pesan harus diisi.', 'title': 'Formulir Kontak', 'blogId': '6682949774174203448', 'contactFormNameMsg': 'Nama', 'contactFormEmailMsg': 'Email', 'contactFormMessageMsg': 'Pesan', 'contactFormSendMsg': 'Kirim', 'contactFormToken': 'AOuZoY7cSa9z727FtGPCXz4BnuB6yYNd9A:1731779216139', 'submitUrl': 'https://www.blogger.com/contact-form.do'}, 'displayModeFull')); </script> </body>--></body> </HTML>